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 This paper proposes a novel intelligent technique that has been designed to optimise the 
performance of Software Defined Networks (SDN). The proposed hybrid intelligent system 
has employed integration of intelligence-based optimisation approaches with the artificial 
neural network. These heuristic optimisation methods include Genetic Algorithms (GA) and 
Particle Swarm Optimisation (PSO). These methods were utilised separately in order to 
select the best inputs to maximise SDN performance. In order to identify SDN behaviour, 
the neural network model is trained and applied. The maximal optimisation approach has 
been identified using an analytical approach that considered SDN performance and the 
computational time as objective functions. Initially, the general model of the neural network 
was tested with unseen data before implementing the model using GA and PSO to determine 
the optimal performance of SDN. The results showed that the SDN represented by Artificial 
Neural Network ANN, and optmised by PSO, generated a better configuration with regards 
to computational efficiency and performance index.  
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1. Introduction  

Over the past few years, upon entering the era of ‘big data, 
there has been a change in the traditional internet traffic to a more 
complex traffic form. This complexity has required the increased 
flexibility and scalability of the modern data centre. In addition to 
the utilisation of numerous device types within the same area and 
an increase of advanced network applications, it is now possible 
for a multitude of end-point devices to share and exchange 
varying network traffic patterns. As a result, there is a need for a 
change in the infrastructure of the current network in order to 
modernise it in line with these differing network traffic patterns. 
As such, a new approach has been proposed [1]. 

 In the recent years, hybridisation or combination of different 
machine learning and adaptation techniques has been employed 
for a large number of new intelligent system designs. The main 

aim of integrating these techniques is to overcome individual 
limitations and to achieve synergetic effects [2]. These 
techniques including, Neural Networks (NNs), the Adaptive 
Network Fuzzy Inferences System (ANFIS) are used for mapping 
and modelling purposes. Whilst evolutionary based optimisation 
approaches, such as  

the Genetic Algorithm (GA) and Particle Swarm Optimisation 
(PSO) have been applied widely to produce powerful and 
optimised intelligent systems [3].  

In many modern systems, artificial intelligence methods, such 
as intelligent transportation, have taken on notable roles. This 
adoption of new technology has encouraged the consideration of 
improvements in the conventional computer networks. The SDN 
paradigm’s abstraction concept and AI techniques have a complex 
relationship that can be utilised to develop network elements with 
adaptive behaviours that can also introduce contemporary 
mechanisms that can overcome the common network issues as 
well as new issues related to SDN [1]. 
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Recently, with the fast development of the Internet, network 
topology, and number of applications have been changed 
gradually, which has led to be more complicated in structures and 
functions. A network based on the traditional TCP/IP architecture 
faces many challenges, especially the router, as the network core, 
takes on too many efforts to deal with.   As a result, the validity 
and efficiency of data forwarding is being threatened. Hence, we 
need to find a new kind of network architecture to solve the 
existing problems. To this end, the study of future networks is 
proceeding all over the world, and the Software Defined Network 
(SDN) is one of them [4]. SDN is an architecture enabling rapid 
innovation, while hiding much of the complexity of the 
networking design. As such, it is a promising solution for network 
virtualisation that decouples control from the forwarding or data 
plane [5]. In doing so, it can provide the capability of remote and 
centralised control of the network forwarding-plane through the 
network control-plane.  

    SDN, as a network platform, has been studied widely in the 
literature and many researchers have proposed soft computing 
methods to model and optimise the network. Yilan and et al. [6] 
provided a genetic algorithm for solving the bandwidth-
constrained multi-path optimisation problem in the SDN. Gao and 
et al. [7] contributed  a Particle Swarm Optimisation algorithm to 
solve the control placement problem that takes into consideration 
both the latency between controllers and their capacities. Zhang 
and Fumin [8] explored applications of the SDN technique in the 
direction of the automation of network management, the unified 
control of optical transmission and IP bearing, smooth switching 
in a wireless network as well as network virtualisation and QoS 
assurance. Risdianto and et al. [5] evaluated the performance of 
an SDN-based virtual network on different virtualisation 
environments, including operating system based virtualisation, 
hardware-assisted virtualisation, and par virtualisation. 
Sgambelluri and et al. [9] proposed novel mechanisms that have 
been specifically introduced to maintain working and backup 
flows at different priorities and to guarantee effective network 
resource utilisation when a failed link is recovered. Ionita and 
Victor-Valeriu identified a method of avoiding DDoS attacks in 
the SDN environment. These scholars utilised a cyber defence 
system to assess risk that was structured around the neural 
network and the biological danger theory. This demo platform is 
able to achieve full packet capture in the SDN in addition to 
mitigating any attacks, providing it is considered necessary by the 
central command component. The benefit of these packet captures 
is that they can be utilised for forensic analysis to identify the 
attacker [10].  

A novel open flow controller, which was structured around the 
intracerebral neural network was suggested by Wu and Huang in 
order to generate a independent media handover with wireless 
operation. As such, binary decisions are made by the controller 
that are determined by the link control parameters. These are 
instantly generated and gathered from the trained neural network, 
which is reliant on the interactions between mobile speed and the 
wireless link performance parameters. Using a mutated PSO, 

these authors managed to train the fundamental controller 
equation for the media independent handover that is interspersed 
with the intracerebral neural network’s sigmoid and radial 
activation functions [11]. 

   A hybrid intelligent system is proposed in this paper to 
optimise the performance (i.e. throughput, delay) of the SDN. The 
proposed system includes ANN to model inputs (flows of the flow 
tables)-outputs (throughput and delay) of the network. After, the 
evolutionary algorithms have been employed to find the optimal 
set of inputs that maximise this performance. This method grants 
to lessen the burden of SDN switch by making the network 
controller adaptively providing the rules/flows to the switches 
instead of making the switch suspends for the controller events 
every period of time.  

2. Software-Defined Networks 

    It was previously noted that a software-defined network (SDN), 
could be centrally organised around the principle of the 
compartmentalisation of the control plane and data plane. The 
SDN is a budding architecture that is promoted by the ONF due 
to its ability in forwarding functions and network control 
decoupling. This decoupling allows the direct programming of the 
network control and the abstraction of the underlying 
infrastructure for applications and network services. The 
networking devices have their intelligence removed in this 
architecture and positioned within a centralised controller, which 
manages the functionality of the entire network. Software based 
SDN controllers also have this centralised network intelligence 
allowing them to maintain a global view of the network. This 
allows the infrastructure devices to take on a forwarding role that 
is able to process incoming packets. This role is determined by a 
set of rules generated instantaneously by the controller within the 
control layer that is based on some predefined program logic. A 
remote commodity server is a usual manner in which these 
controllers are run. A secure connection allows communication 
with the forwarding elements utilising a standardised command 
set. A high-level architecture for SDN is presented by Open 
Networking Foundation ONF [12], that has three main layers, 
application, control and infrastructure layers that are vertically 
split as detailed in Figure 1 

As demonstrated by [9], the SDN controller serves to maintain the 
stream tables so as to engage in the management of every stream 
that is conveyed through the system. Application layer service 
requests are mapped by the SDN control layer into defined 
commands and directives to data plane switches. The SDN control 
layer then supplies applications with data plane topology and 
activity information. As such, the control layer acts as either a 
server or a collaborating set of servers, which are recognised as 
SDN controllers.  

    The OpenFlow procedure can be regarded as an open SDN 
specification that is constituted of a pair of foundational elements: 
first, the OpenFlow switch and, second, the controller. The former 
facilitates the execution of the data plane while the latter realises 

http://www.astesj.com/


A. Sabih et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017) 

www.astesj.com     619 

the control plane. It should be noted that the OpenFlow procedure 
as a totality is employed by the interchange that takes place with 
regard to the controller and the switches via a safe channel. The 
OpenFlow switch and controller communicate via a safe channel 
that is realised in the context of a distinctive practice and, 
according to [10], this is also referred to as OpenFlow. The 
controller transmits a Flow Table towards the OpenFlow switches 
and each stream passage in the former element is constituted of a 
regulation crafted from an organisation of fields, thereby 
coordinating the approaching bundles. It is notable that this is an 
activity that characterises the issue of how the coordinating 
parcels can be prepared, for example, by transmitting on a specific 
yield port. 

In addition, a number of counters are employed in order to 
collect information relating to the stream. In a similar way, each 
passage can be linked to alternative information, one case of this 
being the requirement level and the hard and idle timeout of the 
pair of timing devices.  

The bundle is captured and conveyed to the controller that 
employs the safe channel in those instances where a switch 
receives a parcel that is not engaging in the coordination of the 
passages that have been introduced. Having captured the bundle, 
the activity of the OpenFlow switch is regulated by the controller 
as a result of the overhaul of its Flow Tables, thereby transmitting 
the coordinating parcels to the end point [8]. One implication of 
this is that the relative casings are not required to partake in the 
controller another time as a result of the potential initiation of the 
Flow Tables’ reformulation [3]. 

 

            Figure 1. The software-defined network’s architecture 

3. Artificial Intelligence 

3.1. Neural Networks 
A branch of artificial intelligence, disseminated at a 

considerable pace in recent times owing to its suitability with 
regard to the modelling and forecasting ability it has in relation to 
dynamic systems, is the artificial neural network (ANN). In light 
of their promising potential, ANNs have emerged as a central 
branch of research into artificial intelligence. The registration of 
the input-output relationships of nonlinear and synthesis systems 
have been identified as one of the key advantages offered by ANNs 
and, notably, this relationship can be straightforwardly, rapidly, 
and cost- and time-effectively discerned by lowering the error with 
regard to the network output(s) and the actual output(s). A defining 
feature is that, following the appropriate preparation of the 
network, outputs can be estimated within a very short space of time 
(namely, in a matter of seconds). Frameworks that centre on 
artificial neural networks are currently seeing effective application 
in a range of areas – a few examples being including adaptive 
control, laser applications, nonlinear system identification, 
robotics, image and signal processing, medical areas, pattern 
recognition, error detection, process logging, and renewable and 
sustainable energy areas – in order to surmount obstacles faced by 
engineers [11]. The only appropriate connections in a feedforward 
neural network structure are between the outputs and inputs of each 
layer. As such, there are no connections between the outputs of one 
layer and the inputs of the same or previous layers [13]. 

3.2.  Evolutionary Algorithms  
    Taking inspiration and motivation from natural processes and, 

in addition, basing the developments on factors relating to iterative 
and probabilistic processes, a range of evolutionary algorithms – 
including genetic algorithms (GAs), particle swarm optimisation 
(PSO), and simulated annealing – have been formulated in recent 
years. The primary purpose of such developments is for 
application in optimisation issues. Two multi-purpose and 
frequently employed algorithms include GA and PSO, and these 
are utilised in every domain [12]. 

• Genetic algorithm: Formulated by Holland (1975), GAs 
are self-modifying global optimisation probability search 
algorithms, the fundamental concept of which was inspired 
by the genetic mechanisms that form the basis of the theory 
of Darwinian natural selection and biological evolution. 
GAs operate by simulating the biological processes that are 
observed in the natural world as driving the phenomena of 
genetic and evolutionary development; according to the 
concept of natural selection, GAs provide solutions to deep 
problems by employing code technique and reproduction 
processes [13]. GAs has been extensively employed in a 
variety of domains with considerable efficacy in recent 
years, and this is primarily attributed to their almost 
universal relevance and promising results. The difference 
between the more traditional search algorithms and GAs[4] 
is that the latter have numerous candidate solutions rather 
than just one partial or candidate solution. With GAs, each 
problem’s candidate solution is portrayed by a data 
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structure that is termed an ‘individual’. There are two parts 
to each individual; these are the chromosome and the 
fitness. An individual’s chromosome is constructed from 
genes with each value assigned to the gene being referred 
to as alleles. These individuals combine to form a 
population, the size of which remains constant for the 
duration of the search for most GAs. Out of the current 
population, a number of ‘parent’ individuals are selected, 
based on their fitness, which are allowed to create 
offspring. Individuals with above average fitness have a 
higher than average chance of selection for parenting. 
Following selection, the parents are subjected to a number 
of reproductive operators, such as crossover and mutation. 
Those subjected to crossover have a copy of their genes 
taken to create an offspring’s chromosome. This is 
comparable to the creation of living organisms that are 
created from a genetic mixture of both parents from sexual 
reproduction. However, only one parent is required for 
mutation. In this manner, the offspring is often an almost 
exact replica of the parent but with a few altered genes. 
Following the generation of the offspring, their represented 
candidate solutions can be evaluated, and the offspring’s 
fitness is determined. As the population size remains 
largely static, before the offspring can be incorporated into 
the population, it is necessary for some individuals in the 
current population to be removed, or die. Removal of 
individuals is often decided from their fitness with those 
individuals with a below average fitness being more likely 
to be selected for removal than those with an average or 
above average fitness. Again, this is reminiscent of the 
evolution of living organisms and is termed natural 
selection. As such, those individuals that display better 
fitness are allowed to procreate and live longer. 
Interestingly, this process of fitness selection means that the 
original population does not need to be very good. Indeed, 
it is often the case that each individual in the initial 
population represents a randomly generated candidate 
solution; however, the repetitive application of natural 
selection and reproduction allows GAs to generate rapid 
and efficient solutions [13].  

• Particle Swarm Optimisation: First developed by 
Kennedy and Eberhart (1995) [14] and built on by the 
researchers several years later (Ibid, 2001) [15], PSO 
algorithms have been applied with enormous success in 
optimising a broad range of applications [16]. PSO operates 
by locating all individuals and particles (usually in the 
range of 10-100) in randomised positions and, following 
this, intending that each particle engages in random motion 
in a determined direction in the search space. Following 
this, the direction of each particle is incrementally modified 
in order to proceed according to the optimal previous 
positions, thereby identifying more favourable positions on 
the basis of specifications or an objective function (i.e. 
fitness). The original particle speed and location are chosen 
randomly and, in turn, the velocity formula presented 
below is used to provide updates: 

)()( 22111 iiiic xGbRCxPbRCwVV
i

−×+−×+=+       (1)  

Contrastingly, the new particle is computed by 
summing the new velocity to that which precedes it, as 
presented below: 

11 ++ +=
icii Vxx                                                   (2)   

Where: 𝑉𝑉𝑉𝑉  denotes the particle’s velocity; X 
denotes the particle’s position; R1 and R2 are independent 
random variables uniformly distributed in [0, 1]; C1 and C2 
are the acceleration coefficients, and w represents the 
inertia weight. The particle’s new velocity can be 
calculated by employing Eq. 13, and the information 
required includes the previous velocity, the distance of the 
particle’s present position from its optimal position (Pb), 
and the global best position (GB). Following this, on the 
basis of Eq. 14, the particle is conveyed to a new location 
in the search space and, notably, the way in which every 
particle performs is evaluated in relation to a predetermined 
objective function known as the performance index.                   

4. Equation Simulation and Results 

4.1. SDN Simulation 
SDN simulation has been performed using the Mininet 

platform which is the common emulation for SDN which is used 
by researchers to collect all datasets of inputs and outputs. Mininet 
has the ability to imitate various types of system components, for 
example, have, layer-2 switches, layer-3 switches, and interfaces. 
In addition, simulation experiments were carried out using POX 
controller with OpenFlow 1.0 and monitoring of the flows was 
required for all events. Regarding which, in order to build the 
learning system, the SDN controller gives the orders to SDN 
switch to monitor the flows, and the switch keeps on monitoring 
them to detect the events. When the flows are monitored, the entire 
events whether they occur only frequently or periodically are 
stored in the database to be used in the ANN learning system. The 
flows/inputs include the rules coming from the controller. In turn, 
the output will be represented by the system throughput and the 
network delay. Consequently, the data which are collected from 
the ANN learning system is considered as being an efficient input 
to the optimisation algorithms. This paper presents a new method 
to minimize the load of the SDN switch by making it changing 
adaptively by the controller, instead of wait for the event all the 
time. 

4.2. SDN Identification 
When the ANN training started, the dataset had been 

preprocessed by normalising them into the range between -1 and 
1. The dataset of the inputs and outputs was divided randomly into 
three subsets: a training set, valediction set and testing set. The first 
subset was for establishing the gradient as well as updating the 
network weights and biases. The error regarding the second subset 
was observed during the training development. The validation 
error is usually reduced in the initial training phase, as is the 
training set error. Nevertheless, when the network overfits the data, 
the error in the validation set invariably starts to rise. In the current 
case, the network parameters were saved at the minimum of the 
validation set error. 
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    Input values need to be normalised in the range [-1, 1], which 
corresponds to the minimum and maximum actual values. 
Subsequently, testing the ANN requires a new independent set 
(test sets) in order to validate the generalisation capacity of the 
prediction model. A multilayer feedforward network was 
implemented to estimate the performance of the SDN. In order to 
obtain a maximum accuracy of prediction, the network was trained 
in different topologies. For each network architecture, the training 
was run ten times for various random initial weights and biases 
using the Levenberg Marquardt algorithm (LMA). After 
investigating the performance of different architectures using the 
exhaustive search method, the best trained ANN with one hidden 
layer was found to consist of 17 neurons in this hidden layer, which 
gives the comparably better performance of MSE, with 2.488 ×10-
8, see Figure.. 2. While, Figure 3 shows the performance of the 
network as a mean square error (MSE) versus the network 
architecture for the single hidden layer. Also, Figures 4 and 5 show 
the simulated and predicted SDN performance for both the training 
and test sets. It is noticed that the ANN model is efficiently 
accurate and the network is accepted as a general model to be 
integrated, as the next step, with GA or PSO so as to produce the 
proposed intelligent hybrid system.  

 

                        Figure 2. the progress of the ANN performance. 

 
               Figure 3 Performance of a single hidden layer ANN 

 

Figure 4 Comparing predicted with actual SDN performance for the training 
sets 

 

Figure 5 Comparing predicted with actual SDN performance for the testing sets 

4.3. SDN Optimisation 

GA and PSO were integrated separately with the trained ANN 
model to select the optimal set of inputs that make the network 
work as efficient as possible. Figure 6 shows the architecture of the 
system including the trained general ANN model as well as PSO 
and GA as an optimizer.  

 
 

                     Figure 6 The architecture of the proposed method 
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TABLE I.  PERFORMANCE AND COMPUTATION TIME COMPARISONS FOR GA 
AND PSO 

Optimisation 
method 

SDN Performance 
% 

Computation 
Time (min) 

PSO 96.321 3.23 

GA 94.846 6.75 
 

 
       Figure 7 Convergence comparison of GA and PSO 

    The simulation experiments were carried out by MATLAB 
platform. PSO was employed to find the optimal structure of the 
network, and the best operational parameters of this and the GA 
algorithm were chosen after extensive simulations, which were set 
as follows:  

• Size of the population or swarm: 50 
• Maximum iterations or generations (max) :100 
• Cognitive acceleration (C1): 1.2 
• Social acceleration (C2): 0.12 
• Momentum or inertia (w): 0.9 

    A comparison of the results of the SDN performance is provided 
in Table 1 and Fig. 7. PSO has outperformed GA regarding the 
performance, and computational time, the convergence is faster 
with fewer iterations, and the obtained fitness is higher. However, 
the results provided were obtained after running PSO/GA 20 times. 

5.  Conclusion  

This paper has presented a novel hybrid intelligent system for 
the modelling and perfecting of the Software Defined Network 
(SDN). This involved the training of an artificial neural network 
(ANN), which had a single layer in the hidden zone, to map the 
inputs and network performance. An acceptable MSE was shown 
by the network that was demonstrated as being below 2.466x10-8. 
The application of unseen data as a test set to the trained ANN 
model proved its generality; this ANN model was then coordinated 
with evolutionary algorithms (EAs) to create the presented 
intelligent hybrid system. In order to optimise the EA, PSO and 
GA were utilised in order to identify the optimal input set for the 
SDN. This optimisation was based on the fitness function of the 
individuals. The comparison results showed that PSO was a more 
effective option in terms of computational time, convergence and 
performance.  
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